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Abstract

The Lagrangian numerical simulation (LNS) scheme presented in this paper is motivated by the multi-
phase particle-in-cell (MP-PIC). In this numerical scheme we solve the fluid phase continuity and mo-
mentum equations on an Eulerian grid. The particle motion is governed by Newton’s law thus following the
Lagrangian approach. Momentum exchange from the particle-to-fluid is modeled in the fluid phase mo-
mentum equation. Forces acting on the particle include drag from the fluid, body force and force due to
interparticle stress. There is a freedom to use different models for these forces and to introduce other forces.
The effect of viscous stresses are included in the fluid phase equations. The volume fraction of the particles
appear in the fluid phase continuity and momentum equations. A finite volume method is used to solve for
the fluid phase equations on an Eulerian grid. Particle positions are updated using the Runge-Kutta
scheme. This numerical scheme can handle a range of particle loadings and particle types. The LNS scheme
is implemented using an efficient three-dimensional time-dependent finite volume algorithm. We use a
Chorin-type pressure-correction based fractional-step scheme on a non-staggered cartesian grid. In this
paper, we consider only incompressible Newtonian suspending fluid. However, the average velocity field of
the fluid phase is not divergence-free because its effective density is not constant. Our pressure-correction
based fractional-step scheme accounts for varying properties in the fluid phase equations. This method can
also account for suspending fluids with non-constant properties. The numerical scheme is verified by
comparing results with test cases and experiments. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Numerical simulations of particulate flows find application in various settings; e.g., sedimenting
and fluidized suspensions, lubricated transport, hydraulic fracturing of reservoirs, slurries, sprays,
etc. Numerical schemes based on mathematical models of separated particulate multi-phase flow
have used the continuum approach for all the phases (Gidaspow, 1994) or a continuum approach
for the fluid phase and a Lagrangian approach for the particles (Williams, 1985).

Continuum/continuum approaches consider the particulate phase to be a continuous fluid in-
terpenetrating and interacting with the fluid phase. These approaches are commonly used for
dense particulate flows since it is convenient to model the interparticle stresses using spatial
gradients of the volume fraction (Batchelor, 1988; Gidaspow, 1994). However, for multi-modal
simulations one has to consider each particle type (i.e., particles of different size or material) as a
separate phase. This requires solving extra continuity and momentum equations for each addi-
tional phase. As a result, this formulation is more commonly used for two-phase rather than
multi-mode flow simulations.

It is more convenient to use a Lagrangian description for the particle phase and an Eulerian
approach for the fluid phase for multi-modal simulations. In this formulation each computational
particle (called a parcel) is considered to represent a group of particles possessing the same
characteristics such as size, composition, etc. Use of Lagrangian approach for the particle phase
also solves the problem of numerical diffusion. It has been found that the required number of
parcels to accurately represent the particle phase is not excessive (Dukowicz, 1980).

The Eulerian/Lagrangian approach can be applied under various assumptions. In some
problems, such as the dispersion of atmospheric pollutants, it may be assumed that the particles
do not perturb the flow field. The solution then involves tracing the particle trajectories in a
known velocity field (Gauvin et al., 1975). In other problems the particles carry sufficient mo-
mentum to set the surrounding fluid in motion. In this case it is necessary to include the fluid—
particle momentum exchange term in the fluid phase equation. However, the volume occupied by
the particles in a computational cell in comparison with the volume of the fluid may still be ne-
glected (Crowe et al., 1977). Dukowicz (1980) presented a time-splitting numerical technique that
accounted for full coupling between fluid and particle phase. In this approach the volume oc-
cupied by the particles in a computational cell is not neglected and a momentum exchange term is
included in the fluid phase equation but the particles are assumed to be sufficiently dispersed so
that particle collisions are infrequent. This approach is appropriate for many liquid spray ap-
plications. Particle collision frequencies are high when the particulate volume fractions are above
5% and should be accounted for in the numerical method. Lagrangian collision calculations are
not suitable to resolve the interparticle stress arising from collisions in the Eulerian/Lagrangian
approach for dense particulate flows.

Andrews and O’Rourke (1996) and Snider et al. (1998) presented a multi-phase particle-in-cell
(MP-PIC) method for particulate flows that accounts for full coupling between the fluid and
particle phase as well as the interparticle stress due to collisions. The fluid phase is assumed to be
inviscid where viscosity is significant on the scale of the particles and is used only in the particle
drag formula. In this approach the particle phase is considered both as a continuum and as a
discrete phase. Interparticle stresses are calculated by treating the particles as a continuum phase.
Particle properties are mapped to and from an Eulerian grid. Continuum derivatives that treat the
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particle phase as a fluid are evaluated to model interparticle stress and then mapped back to the
individual particles. This results in a computational method for multi-phase flows that can handle
particulate loadings ranging from dense to dilute and particles of different sizes and materials.

The assumption of an inviscid fluid phase is not suitable for all applications, e.g., flow of
particulate mixture in hydraulic fractures. In this paper we present an Eulerian/Lagrangian nu-
merical simulation (LNS) scheme for particulate flows in three-dimensional geometries. We ex-
tend the MP-PIC approach of Andrews and O’Rourke (1996) to include the effect of viscous stress
in the fluid phase equations. Snider et al. (1998) used finite-volume SIMPLER algorithm (Pat-
ankar, 1980) with staggered grid for velocity and pressure to solve for an unsteady two-dimen-
sional flow of particles suspended in an incompressible fluid. Since time-splitting algorithms are
better suited for unsteady flow calculations we use a finite-volume Chorin-type (Chorin, 1968)
pressure-correction based fractional-step scheme to solve the fluid phase equations in Cartesian
coordinate system. Our pressure-correction based fractional-step scheme accounts for varying
properties in the fluid phase equations. We use a non-staggered grid for velocity and pressure
(Rhie and Chow, 1982). We do so because we intend to extend the scheme to three-dimensional
curvilinear coordinate system in future. The non-staggered grid requires less storage memory than
the staggered grids in addition to other advantages (Peri et al., 1988; Zhang et al., 1994).

The fluid and particle phases exchange momentum through the hydrodynamic forces acting on
the particle surface. Models for these forces can be developed through experimental investigation.
The development of direct numerical simulation (DNS) techniques for particulate flows (Hu et al.,
1992; Hu, 1996; Johnson and Tezduyar, 1997; Glowinski et al., 1999; Patankar et al., 2000) have
given rise to an invaluable tool for modeling the hydrodynamic forces in many applications. It is
straightforward to use these models in the LNS technique. One of our future objectives is to
model the hydrodynamic force using our DNS capability. These models will then be implemented
in the LNS scheme which is computationally less intensive than the DNS methods.

In the following section we will present governing equations for the Eulerian/Lagrangian
formulation. In Section 3 the numerical scheme will be explained. This computational scheme will
then be tested in Section 4 by comparing calculated and experimentally measured sedimentation
rates (Davis et al., 1982) for bimodal suspension. This test case was also used by Snider et al.
(1998). This scheme will then applied to the sedimentation of particles initially placed at the top of
the sedimentation column. As observed in the direct numerical simulation by Glowinski et al.
(1999), we see a fingering motion of the particles which are heavier than the suspending fluid. This
phenomenon is similar to the Rayleigh-Taylor instability of heavy fluid on top of a lighter fluid.
Simulation results for the flow of a particulate mixture in a reservoir fracture will be qualitatively
compared with known experimental results of Barree and Conway (1995). Results on sedimen-
tation in an inclined vessel will be reported. Conclusions will be stated in Section 5.

2. Governing equations

We use equations of motion for the average properties of the fluid phase. Different forms of the
averaged equations of motion for the fluid phase have been proposed in literature (see Joseph and
Lundgren, 1990 and references therein). Any of these equations of motion for the fluid phase can
be used in this formulation without any fundamental difficulty. In the present work we use the
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fluid phase equations proposed by Tsuo and Gidaspow (1990). The continuity equation is given
by

© (0000) + V- (pyrur) = 0, (1)

ot
where p; is the density of the suspending fluid, 6; is the fluid volume fraction and uy is the average
velocity of the fluid phase. The average velocity field of the fluid phase is not divergence-free even
if the suspending fluid is incompressible. The momentum equation for the fluid phase is given by

0
3 (pebrug) + V - (pe0ucug) = —Vp + V - [0pp;Vug] + V - [0 (V)]

2
—V{ggf,us'llf} —F, (2)

where p is the dynamic pressure in the fluid, g is the viscosity of the fluid phase and F is the rate of
momentum exchange per unit volume between the fluid and particle phases. Dukowicz (1980) had
a viscous term similar to the second expression on the RHS of (2). The body force due to gravity
acting on the fluid phase is balanced by the hydrostatic pressure and does not appear explicitly in
the momentum equation. Expressions for F will be presented later in this section. An equation of
state for the fluid phase is in the form

p :f(pa T)’
f(p,T)= % for an ideal gas, (3)

f(p,T) = constant for a constant density fluid,

where T is the temperature, R is the gas constant and f is some function of pressure and tem-
perature.

We use the particle phase equations as given by Andrews and O’Rourke (1996); evolution of the
particle phase is governed by a Liouville equation for the particle distribution function

(b(xpﬂ up7 pp7 V;M t)

0¢

St Vs (9u,) + Va, - (9A) =0, )
where x;, is the particle position, u, is the particle velocity, p, is the particle density and V} is the
particle volume. A is the particle acceleration given by

du 1 0 1
A:d—::Dp(uf_up)_p_vp+< _p_f>g_05 VT’ (5)

p p p

where 0, is the particle volume fraction. Eq. (5) models acceleration due to hydrodynamic drag,
dynamic pressure gradient, net buoyant force and gradients in the interparticle stress 7. Different
appropriate models for force on the particle can also be used in (5). In this work we use D,, given
by (Andrews and O’Rourke, 1996):
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where Cy is the drag coefficient, Re is the Reynolds number and R, is the particle radius (we
assume spherical particles). Particle-particle collisions are modeled by an isotropic interparticle
stress given by (Harris and Crighton, 1994):

RO’
—, (7)
ch - Hs
where P, has units of pressure, 6 is the particle volume fraction at close packing and f is a
constant. A discussion of the factors entering into the choice of P, and f is given by Snider et al.
(1998). In (7) it is assumed that acceleration of a particle due to interparticle stress is independent

of its size and velocity. Any stress model that accounts for the effect of particle size and velocity
can replace (7) when available. The particle volume fraction 6 is defined by

Qs:///qf)%d%dppdup. (8)

Fluid volume fraction 0; is then given by
O =1— 0, ©)

T =

The interphase momentum transfer function F is given by

] | [or

Andrews and O’Rourke (1996) highlighted several important features of this formulation.
The previous Eulerian/Lagrangian formulations (e.g., Dukowicz, 1980) ignored the interpar-
ticle stress term which is modeled in the present approach. It can be shown by deriving the
average momentum equation for particle phase from (4) that this formulation accounts for
the kinematic stress that arises from local particle velocity fluctuations about the mean ve-
locity. The effect of buoyancy driven currents is modeled in this formulation. This can be
verified by adding the average momentum equations for the fluid and particle phases. This is
also confirmed by our numerical simulation of the Rayleigh-Taylor instability (to be pre-
sented later) during the sedimentation of particles initially placed at the top in a sedimen-
tation column.

1
Dp(up —u,) ——V,
p

dV,dp, du,. (10)

3. Numerical scheme

We use a finite-volume method on an Eulerian grid to solve the fluid phase equations in car-
tesian coordinate system. A non-staggered grid for velocity and pressure (Rhie and Chow, 1982) is
used. The particle phase equations are solved by considering the motion of a finite number of
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computational particles which represent a sample of the total population of particles. Each
computational particle, henceforth referred to as a parcel, is considered to represent a group of
particles of identical size, velocity and position.

3.1. Interpolation scheme

In order solve the particle equation of motion it is necessary to interpolate variables to the
particle position. Similarly the solution of fluid phase equations requires the calculation of
variables on the Eulerian grid. This requires the interpolation of these variables from particle
location to the Eulerian grid. This is accomplished by using bilinear interpolation function formed
from the product of linear interpolation functions in the x, y and z directions (see Snider et al.,
1998). The bilinear interpolation function S;;(x) is unity at a given grid node (i, j, k) which is at
the cell center and decreases to zero at the 26 neighboring nodes and the domain beyond these
neighboring nodes. The position x,, of any particle can be located in a box defined by eight
Eulerian grid nodes surrounding it. The sum of the eight interpolation functions, due to the
surrounding nodes, at a particle location is unity.

The particle volume fraction on the Eulerian grid is calculated by

1
Qszjk = V_k ZNprSUk<Xp)7 (1 1)
ij p

where 0, is the particle volume fraction at grid node (i, j, k), ¥ is the volume of the Eulerian cell
(i,j,k) and N, is the number of particles in a parcel. The fluid volume fraction 0y at grid node
(i, 7, k) immediately follows from (9).

An example of the interpolation of a variable from the grid node to particle position is given by

8
Up = ZS;(Xp)uf;v (12)

where ug, is the fluid velocity at the particle location and ( is an index for the eight grid nodes
bounding the particle.

The interphase momentum transfer F;; at a grid node (i, /,k) is evaluated by an interpo-
lation scheme given by Snider et al. (1998). According to this scheme the expression for F;; is

given by
1

1
- Vi Z {pp VoNoSiji(Xp) [Dp(“fijk - “p) - p_vpijk] } (13)
ij

P p

1 1
Fijr = V. Z {pp VolNpSije (Xp) [Dp (“fp - “p) - p_VPp
ij

P p

This gives a less diffusive interpolation scheme and increases the diagonal dominance of the
momentum equation of the fluid phase.
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3.2. Numerical algorithm

We use an explicit update of the particle positions in which the translational motion of the
particles is solved based on the fluid velocity and pressure fields at the end of the previous time-
step. Motion of each particle type represents the motion of the parcel it represents. In our nu-
merical algorithm we first solve for the particle equations of motion. This is followed by a solution
of the fluid phase equations. The fluid properties p; and p; are constant.

3.2.1. Numerical scheme for particle motion

Given the solution at the end of n time-steps i.e., given ug, x; for particles in all the parcels, uf
and p”, compute ug“ and Xg“ by the following procedure:

For particles in all the parcels:

Set w? = w!, x"0 = x.
dok=1K
At
sk __ onk—1
u" = uy +Ef1’ where
f, = Du”—in”—l— _b g| — Dyu™t — ! AV (atx’“k’l) (14)
b, P PP O, —
. e Al un,k—l +u*n,k
Xp ’k:Xp’k 1+E<—p > r ) (15)
At (£, +f1
nk nk—1 1 2
up —up K< 2 ),
1 (16)
n n Pt n,k *n.k
where f,=<¢ [Dpuf ——Vp"+ |1 —— |g| —D V1 (atx ’),
’ { oy ( pp) TP Oy } ’
. e Af un,k—l +un7k
Xp,kzxp,k 1+?< P 5 P (17)
enddo

Set wt! = wtX x+! = x"K_ Calculate 0" by using (11).
Here, At is the time-step. In this step the effective time-step for the motion of particles is reduced if
the value of K is greater than one. This is helpful to avoid instability due to the interparticle stress
term. In our numerical simulations K varies between 2 and 5. Value smaller than 2 led to in-
stabilities. The choice of K depends on the application and is usually set ad hoc based on nu-
merical trials. Eventually a systematic choice of K is desirable and is under investigation. Note
that the original MP-PIC approach used an implicit scheme to avoid using small time-steps. A
similar scheme was used by Glowinski et al. (1999) to solve for the motion of particles in their
direct numerical simulation method for fluid—particle mixtures. Near the close packing limit we
use a large but finite value for the particle stress. Our scheme is not completely robust near the
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close packing limit although we did simulate some challenging problems e.g., see Figs. 4-7. Im-
provement of our scheme in this regard is the subject of our current investigation.

3.2.2. Numerical scheme for fluid phase equations

We use a non-staggered cartesian grid to solve the fluid phase equations (Rhie and Chow,
1982). The pressure and the Cartesian velocity components are defined at the center of the
control volume. Mass fluxes are defined at the mid-point of their corresponding faces of the
control volume. We use a Chorin-type fractional-step method (Chorin, 1968) based on a
pressure-correction scheme. This pressure-correction based scheme has several features similar
to the SIMPLE approach of Patankar and Spalding (1972). A fractional-step based pressure-
correction scheme for the turbulent flow of a Newtonian fluid was presented by Comini and Del
Giudice (1985). A variation of the fractional-step pressure-correction approach was also pre-
sented by Choi et al. (1997). The fluid phase equations are solved by the following solution
procedure:

(1) Given uf, p", 0", 0", w'*! and x2*', compute the intermediate velocity uj at the grid nodes
by solving:

pfO?_Hu*—f—D *_i_o«s *_—VPn‘i‘pfO? n+(v n).v(0n+l )
Ar ¥ fUp T DUy = A Uy r Hr
1
—(V-ul) V(07 ) + 007 "+ —
Viik
X Z [pprNpS,:,k(x’;*l)Dpug“] V grid node ijk, (18)
p
where P is defined by
1
P:p_ggfﬂfV‘uf (19)
and
1 ; . .
Dy = 7 Z {pprNpSijk <Xp+1>Dp} for any grid node ijk. (20)

ik 3

3 is the convection—diffusion operator whose operation on any vector v is given by
Iv=V-{(p0; " u} — 07" e V)v}. (21)

Time discretization of (2) and appropriate rearrangement of the terms results in (18). A ‘half
implicit” expression, V - (p07'wtu™!), is used for the convection term. This expression is first-
order accurate. Fluid phase velocity uf in the convection term can be replaced by a second-order
accurate expression given by 2u! —u?~! (Turek, 1996). We can employ approximate factoriza-
tion technique (Beam and Warming, 1976; Briley and McDonald, 1977) in which (18) is fac-

torized as
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(@)[&sffga)fregafu-w

=-VP'+ Af((?" 0F") — Drui — Jui + (Vug) - V(07 ) — (V- up) V(05 )

1 .
i 6;+lvpn + - Z [Pp VprSz’jk(Xg+1)Dpun+l} V grid node ijk, (22)
ik S

p

where

Cu - pr;H—l +DfAt,

~ o 0 n+1 n n+1 0
Jxv—ax{< of — 07 P V(o
o il e O (23)
V= a { (Pf0f+1”fy QfHNfa)V}y
0 pilon il O
V=5 { (prerlufz 0f+lﬂf§>"}-

It can be easily shown that the error in this factorization is O(A#*). An approximate factorization
technique in conjunction with fractional-step method to simulate turbulent flows was developed
by Kim and Moin (1985).

We can solve either (18) or (22) during our simulations. Both approaches are first-order with
respect of temporal discretization and gave similar results. Solving (18) does not involve the
additional error of factorization whereas using (22) offers a faster solution procedure. We use the
power-law upwinding scheme (Patankar, 1980) for this convection—diffusion problem giving a
first-order discretization in computational space. Boundary values of the intermediate velocity are
the same as the velocity specified at the boundary. This is permissible for a first-order pressure
correction based scheme where (26) (the velocity correction equation to be presented later) shows
that the resulting error is O(A#*) (Choi et al., 1997). The solution of (18) is obtained by a block-
correction-based multi-grid method (Sathyamurthy and Patankar, 1994). This method employs a
multi-level correction strategy and is based on the principle of deriving the coarse grid discreti-
zation equations from the fine grid discretization equations. The solution of (22) is non-iterative
and faster involving solution of three tridiagonal matrices.

(2) Given uj at the grid nodes, compute the intermediate velocity (uf)  on cell faces by linear
interpolation. Value of (uf)  on the boundary cell faces is calculated by linear extrapolation of the
values of u; at the interior grid nodes. Other upwind interpolation methods such as the QUICK
formulation (Leonard, 1979) can be used. We consider only linear interpolation scheme in the
present work for this computational step.

(3) Given (u}), and P", compute P"*!'. Correction of cell face velocity is given by

2

L

(0 ) e = (pe0 )

v = -VP, (24)
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where P' = P! — P" is the pressure correction defined at grid node. The pressure correction
equation is obtained by using (24) in the continuity Eq. (1). The discrete form of the equation is
then given by

5 (8N, (6 N (3 N _ 1 (et0)— (o) 6 .
§<$P> +5<5P> +§<§P> _E{ Al +$[(pf0f U)o

Fa (o) ]+ 2wt b e

where 0/dx, 6/dy and §/0z represent discrete difference operators in the computational space. We
use the velocity specified at the boundary while setting up the pressure correction Eq. (25). Thus
pressure correction at the boundary does not appear in (25) (Patankar, 1980). We therefore do not
need a boundary condition for pressure correction to solve (25). We use the block-correction-
based multi-grid method (Sathyamurthy and Patankar, 1994) to solve (25). To obtain pressure
correction at the boundary we apply (24) at the boundary cell faces where both (uf*!) ; and (uf)
are known. P"*! follows directly from the solution for P’. Velocities at the internal cell faces at the
end of the present time-step are computed using (24). These cell face velocities are used to cal-
culate the mass flux in the ‘half implicit’ convection term in the next time step.
(4) Given P, compute u}“ and p"™!'. The velocity at grid nodes is corrected by

(pe0f utth) = (07 up)
At

where the gradient of pressure correction at the grid node is calculated by a central difference
scheme. The pressure p"*! then follows from (19). The value of pressure in the domain is calcu-

——vP, (26)

T T
|
i
1
0.95 |
1 S= o
1 = A
_ =L A
= 09 — ~
D
T 085
b (] Expt. data (Fleavy particles)
1 A Expt. data (Light particles)
i — LNS Case B (Heavy particles)
0.8 — — — — = LNS Case B (Light particles)
' —-—-—-= LNS Case A (Icavy particles)
e — LNS Casc A (Light particles)
075 - T 1 T 1 T T | T T T T ] T T T T ] T T T T '""I'“
0 100 200 300 400 500
Time (8)

Fig. 1. Transient interface levels for bimodal batch sedimentation of particles.
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Fig. 2. Calculated (case B) parcel positions at different times for bimodal batch sedimentation of particles: (a) t = 200 s;
(b) t =360 s; (c) t = 500 s.

lated with respect to the value at some reference point inside the computational space. Conver-
gence is said to be achieved if the residue is less than 1071,

4. Numerical results

We validate the numerical scheme by comparing calculated sedimentation rates with the values
measured in the experiments of Davis et al. (1982) for a bimodal suspension. The sedimentation
column in the experiment was vertical, 100 cm tall and has a square cross-section with each side 5
cm wide. The calculation domain in our simulations have x, y and z dimensions equal to 5, 125
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Fig. 3. Comparison of parcel positions in bimodal batch sedimentation for (a) case A and (b) case B at = 300 s.

and 5 cm, respectively. Gravity acts in the negative y-direction. The suspending fluid is Newtonian
with the density and viscosity being 992 kg/m? and 0.0667 kg/(m s), respectively. Particles of two
different densities are used in the calculations. The density of the heavy particles is 2990 kg/m?;
their diameters vary uniformly between 177 and 219 pm. The density of lighter particles is
2440 kg/m? and their diameters range uniformly between 125 and 150 pm. The initial concen-
tration of the heavy particles is 0.01 and that of lighter particles is 0.03. The particles are initially
placed randomly with uniform distribution upto a height of 100 cm of the sedimentation column.
To model the interparticle stress we choose P, = 100 Pa, § = 3 and 6. = 0.6.

In order to check the convergence of the numerical scheme we perform two simulations with
different grid size, number of parcels and time steps. In case A there are 10 control volumes in the
x and z directions and 50 control volumes in the y-direction. There are 9000 parcels of each type
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Fig. 4. Parcel positions at different times depicting the Rayleigh-Taylor instability of particles falling in a sedimen-
tation column: (a) t =10s; (b) t =15s; (¢c) t =20 s; (d) t = 30 s.

giving a total of 18,000 parcels. The number of particles in each parcel is chosen so that the total
particle volume in each parcel is the same for heavy and light parcel types, respectively. The time
step is 0.05 s. To start the simulation from rest we use smaller time steps beginning from
0.00078125 s and increasing every subsequent time step by a factor of two until it becomes 0.05 s.
For case B we double the number of control volumes and parcels in the domain. The time step is
reduced by half. Here we present convergence results for the numerical scheme based on the
solution procedure without approximate factorization. Similar convergence tests were also per-
formed for the method of approximate factorization and are not reported here.

Fig. 1 shows the transient interface levels of the two types of particles. Here the comparison is
made between the LNS calculations from cases A and B and the experimental data of Davis et al.
(1982). We see that they are in good agreement thus validating the calculations by the present
numerical procedure. Fig. 2 shows the parcel positions in the channel at different times for case B.
Fig. 3 shows the particle positions at t = 300 s calculated from cases A and B. We see that they
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Fig. 5. A three-dimensional view of parcel positions in a sedimentation column.

have almost identical particle distributions. The coarse mesh simulation required around 4 MB
memory and took less than 8 s CPU time for completing one time step on a SGI machine.

We now apply the scheme to the sedimentation of particles initially placed at the top in a
sedimentation column. This is similar to the presence of heavy fluid on top of a light fluid. Such a
configuration should then give rise to a Rayleigh-Taylor instability. This instability was indeed
reproduced in the direct numerical simulation of particles falling a Newtonian fluid by Glowinski
et al. (1999). To ensure that our numerical scheme is able to capture such instabilities we simulated
this case. The x, y and z dimensions of the sedimentation column are 10, 50 and 5 cm, respectively.
Gravity acts in the negative y-direction. The density and viscosity of the Newtonian suspending
fluid are 1000 kg/m? and 0.00667 kg/(m s), respectively. The particle density is 2500 kg/m* and
the diameter is 126 pm. Particles are initially placed in the top half of the sedimentation column in
a regular array and their volume fraction is 0.1. We use the same parameters as before to model
the interparticle stress. There are 17,280 parcels in the calculation domain with each parcel having
6910 particles. There are 10 control volumes in the x-direction, 40 in the y-direction and 5 in the z-
direction. The time step after the initial transient is 0.05 s.
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Fig. 6. Contour plot for pressure averaged in the z-direction in a sedimentation column.

Fig. 4 shows the particle positions in the sedimentation column at different times. Fig. 5
shows the three-dimensional view at ¢t = 17.5s. It is seen that a Rayleigh-Taylor instability
develops leading to particles falling faster near the walls (Fig. 4(a)). Particles near the axis of the
channel are retarded due to an adverse pressure gradient acting on them (Fig. 6). The falling
particles further ‘pull’ the particles from the top. This motion eventually leads to the entrain-
ment of fluid in the fluid-particle suspension (Fig. 4(b)). The ‘bubble’ of fluid rises and breaks
open at the top of the column leading to the ejection of particles (Figs. 4(b) and (c) and 5). This
also leads to the formation of local particle clusters (Figs. 4(d) and 7(b)). The particles even-
tually begin to settle steadily to the bottom of the column to a no-motion state. Fig. 7 shows
the fluid concentration at different times in the x—y plane and averaged with respect to the z-
direction. In the final no-motion state (Fig. 7(d)) the extra weight of the particles is balanced by
the interparticle stress.

The present scheme is used to simulate the flow of solid-liquid mixtures in fractured reser-
voirs. Barree and Conway (1995) reported experimental and numerical study of convective
proppant transport. We consider the flow of solid-liquid mixture in a channel or slot that is
7.5 m long (x-direction), 25 cm high (y-direction) and 6.3 mm wide (z-direction). Gravity acts in
the negative y-direction. We have 150 control volumes in the x-direction, 10 control volumes in
the y-direction and 5 control volumes in the z-direction. The fluid and particle properties and
the parameters for interparticle stress model are the same as that used in the simulation of the
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Fig. 7. Contour plot of fluid volume fraction averaged in the z-direction at different times in a sedimentation column.
The particles are fully settled at 1 =275 s: (a) t =12.5s; (b) t =20s; (c) t =150 s; (c) t = 275 s.

sedimentation column. There are initially no particles in the channel. We simulate two cases.
Fig. 8 shows the particle concentration at different times in the x—y plane and averaged with
respect to the z-direction for the first case. In this case the fluid—particle mixture is introduced
uniformly, at a volumetric flow rate of 19.69 cm?®/s and particle concentration of 10%, from the
top half of the channel at the left end. It is seen that a gravity tongue develops which is identical
to the one seen in the experiments of Barree and Conway (1995). The particles continue to fall,
impinge on the bottom and flow with an increased rate of lateral transport at the bottom of the
channel. This is in agreement with the experimental observation. In the second case the fluid-
particle mixture is introduced uniformly at the left end of the channel at a volumetric flow rate
of 78.75 cm?®/s and 10% particle concentration. Once again we see formation of the gravity
tongue that traverses along the channel length (Fig. 9). It is known from experiments (Kern
et al., 1959) that, in such flows, particles settle and form a bed at the channel bottom. It is seen
in Fig. 9 that a bed of particles is beginning to form. In these simulations there were around
200,000 parcels in the computational domain.

We perform inclined sedimentation calculations using our numerical scheme. Acrivos and
Herbolzheimer (1979) performed experiments to calculate the sedimentation rates in inclined
columns. Experiments were run with the container tilted at different angles. Following Snider et al.
(1998) we perform calculations in a two-dimensional domain. Our code for three-dimensional
domains is used to perform calculations in two-dimensions. The calculation domain in our sim-
ulations have x and y dimensions equal to 5 and 60 cm, respectively. There are 32 control volumes
in the x-direction and 72 control volumes in the y-direction. Gravity acts at an angle of 35° with
the negative y-direction. Suspending fluid properties are the same as bimodal sedimentation.
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Fig. 8. Contour plot of particle volume fraction averaged in the z-direction at different times for flow of fluid—particle
mixture in a fracture. Particles are introduced uniformly at the top half of the channel entrance to the left: (a) t = 35 s;
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Fig. 9. Contour plot of particle volume fraction averaged in the z-direction at ¢t = 79.2 s for flow of fluid—particle
mixture in a fracture. Particles are introduced uniformly at the channel entrance to the left.

Density of the particles is 2420 kg/m?; their diameters vary uniformly between 130 and 142 pm.
Initial concentration of the particles is 0.1. Initially, the particles are randomly placed with uni-
form distribution upto a height of 52.33 cm along the y-axis (the mixture—fluid interface is tilted at
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Fig. 10. Transient interface level during inclined sedimentation of particles.

an angle to vessel walls). We use Model A for interparticle collision with the same parameters as
before. There are 18,111 parcels in the calculation domain. The number of particles in each parcel
is chosen so that the total particle volume in each parcel is the same. The time-step is same as in
bimodal simulations.

Fig. 10 compares the transient interface levels of the particles from experiment (Acrivos
and Herbolzheimer, 1979) and simulation. Fig. 11 shows the particle positions at different
times.

The mixture—fluid interface can form wave instabilities similar to those of a fluid flowing down
an inclined plane. Herbolzheimer (1983) presented photographs of waves at the interface in in-
clined sedimentation. Snider et al. (1998) simulated wave instability at the interface. We perform
the same simulation as Snider et al. (1998) and reproduce the wave observed by them in their
simulations. Fluid viscosity is changed to 0.0188 Pa s, particle diameter is 132 um and particle
density is 2440 kg/m?. Column inclination is 20°. Particles are filled in the column upto a height
of 40 cm. All other parameters are the same as the inclined sedimentation simulations above.
Fig. 12 shows the formation of wave on the mixture—fluid interface similar to that reported by
Snider et al. (1998).

Animations of some simulations reported here and some other simulations can be seen at our
web site http://www.aem.umn.edu/Solid-Liquid_Flows.

5. Conclusion

In this paper we have described an Eulerian—-Lagrangian numerical simulation (LNS) scheme
for the flow of particulate mixtures. We have implemented an efficient three-dimensional time
dependent finite volume algorithm. A Chorin-type pressure-correction based fractional-step
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Fig. 11. Parcel positions at different times during inclined sedimentation: (a) t =25 s; (b) t = 150 s; (¢) t = 250 s.

scheme was used to solve the fluid phase equations on a non-staggered cartesian grid. The re-
ported scheme can account for suspending fluids with non-constant properties.

The numerical scheme was tested through convergence tests for the bimodal sedimentation of
particles in a vessel. Results on the Rayleigh-Taylor instability of particles sedimenting in a fluid
from a height were presented. They were in good agreement with the direct numerical simulation
results reported in literature. Calculations were done for inclined sedimentation in a vessel. Wave
instability on the fluid—mixture interface during inclined sedimentation was observed. We also
simulated the flow of particulate mixture in a fracture. The calculated results were in good
qualitative agreement with the experimental observations.

In summary, we present a numerical scheme that extends the MP-PIC method in the following
way (even if the viscous terms in the fluid phase equations are to be neglected): (a) A fractional-
step algorithm for fluid—particle equations and (b) collocated grid for pressure and velocity.
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Fig. 12. Formation of wave at the fluid-mixture interface during inclined sedimentation.

The numerical scheme is not limited to the particular model used for viscous stress terms in the
fluid phase. It has the flexibility to use different models for these terms. The primary objective
behind adding a viscous stress term was to provide a numerical framework that has the flexibility
to incorporate different models for various applications. The way models are tested is through
comparisons with experiments. Every model must pass this test. If the prediction of a model
disagrees with experiments, then it is not valid. If the predictions agree with few experiments it
does not mean that it is valid either. Our model with viscous terms agree qualitatively with some
experiments; so we are encouraged to look further.
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